

News from the 2010 RedHat Summit

James Pryor, Jason Smith (BNL)
Date: July 12th, 2010
Time: 1:00 PM (ET)

Location: ITD Seminar Room

RHEL 6 Schedule

● Beta 1 – public availability April 2010 via ftp and RHN
for customers

● Beta 2 – SOON! shortly after RH Summit
● Jump in! We'd love to get your feedback

● Release – later this year
● Remember, RHEL 6 becomes available to all customers

with active RHEL subscriptions.

Major RHEL 6 release themes
Optimized foundation OS
For large-scale, centrally-managed enterprise deployments. Lower Total Cost of
Ownership. Secure. Optimized for maximum efficiency of latest generation of high core-
count systems – memory, scalability, RAS, power efficiency. Resource control.

Virtualization – optimize RHEL as host or guest
Deployment, provisioning and flexibility for dynamic workloads from datacenter to
desktop. Emphasis on performance, storage flexibility, security, and guest isolation.

Green IT
Through power management and dynamic guest migration

Innovation and technology leadership

With the latest enterprise ready components in Storage and File Systems, Networking,
Tools, Cluster, Desktop, Installer, and Services. Providing customer access to leadership
technology throughout the RHEL product lifecycle.

RHEL 6 foundation features
● Virtualization – making RHEL an optimized host & guest

● KVM

● Industry leading virt performance, flexibility, security for both host & guest
environments

● Device I/O optimization

● Improved manageability
● For large scale virtualization deployments, server & desktop

● RHEV-M (virt/cloud management) enablers

● Samba enhancements for Windows active directory and file sharing

● Power management
● Efficiency – lower deployment costs, reduced carbon footprint

● For virt, bare metal, laptop

● Hardware level as well as dynamic system service startup and suspend

RHEL 6 foundation features (continued)

● RAS (Reliability, Availability, Serviceability)
● Hotplug, memory error reporting, filesystem data integrity

● Support tools – automated crash detection and bug reporting infrastructure

● Hardware enablement and scalability
● Maximum efficiency with latest generation of highly scalable servers with

headroom to grow

● Large configurations (cpu, memory, busses, I/O), NUMA awareness

● UEFI – new bios boot loader interface

● Supported architectures: x86, x86-64, PPC64, s390x

● Desktop
● VDI- virtualized thin client, SPICE integration

● Mobility – dynamic network config

● Display – external monitors, multihead, projectors, docking station

Kernel Resource Management

 Illustrative cgroup use cases

● Database workload dedicated 90%, background backup utility 10%

● Virtualization hosting provider – allows QoS (quality of service guarantees
based on pricepoint)

Virt Guest A
50% CPU
50% Mem

Virt Guest B
25% CPU
25% Mem

Virt Guest C
25% CPU
25% Mem

Network
40% net 40% net 20% net

Storage

60% 20%20%
I/O

Kernel resource management
● Cgroup – Control group

● A control group provides a generic framework where several “resource
controllers” can plug in and manage different resources of the system
such as process scheduling, memory allocation, network traffic, or IO
bandwidth.

● Can be tracked to monitor system resource usage
● Sysadmin can use tools to allow or deny these groups access to resources

● Memory resource controller
● Isolates the memory behavior of a group of tasks – cgroup – from the

rest of the system (including paging). It can be used to:

● Isolate an application or a group of applications
● Create a cgroup with limited amount of memory

● Cgroup scheduler
● CFS – Hierarchical proportional fair scheduler (SCHED_OTHER)

● Static priority scheduler with constant bandwidth limits (SCHED_FIFO)

Kernel resource management (continued)

● I/O controller
● Designate portion of I/O bandwidth (based on controller queue depth)

● Network controller
● Define classes & queues between generic network layer and NIC. Tagging

packets with class identifier with different priorities, placing outbound packets in
different queues for traffic shaping.

● Libcgroup
● SELinux policy

● Cgroup creation, deletion, move and configuration management.

● Rules based automatic task placement, PAM module, daemon, uid/gid based
rules

● Illustrative cgroup use cases
● Database workload dedicated 90%, background backup utility 10%

● Virtualized hosting provider – allows QoS (quality of service guarantees based on
pricepoint)

Power management
● Objective – reduced deployment costs through efficiency

● Kernel
● Tickless kernel – fewer interrupts, more idle time to drop to lower power states – x86/x86-64 only

● ASPM (Active State Power Management) – PCI Express reduced power states on inactivity

● ALPM (Aggressive Link Power Management) – SATA links in low power mode when no I/O pending

● Energy efficient turbo and deep C states

● Relatime drive access optimization reducing filesystem metadata write overhead

● Graphics power management

● System services / daemons
● Intelligent drive spin down

● Application audit and redesign where necessary to be event based rather than needless polling

● TuneD – adaptive tuning daemon – powerdown idle peripherals & latency policy scripts.
Providing a variety of power tuning pre-canned profiles

● Virtualization management – RHEV-M integration
● Systems which are powered off are the most efficient. Workload consolidation with power

management automatic migration policy

Kernel scalability

● Objective – providing scaling headroom anticipating many years
of upcoming hardware generations. Tested and supported limits
will likely grow over the course of product lifespan.

● Scalability features – enhancements in algorithms. Applicable to
bare-metal and virtualized guests

● Split LRU VM – different eviction policies for file backed vs swap backed

● Ticket spinlocks fixes NUMA starvation

● CFS scheduler – better NUMA balancing

● UEFI boot loader install & boot support on > 2TB disk partitions

● Virtualization scalability accommodates running older releases on newer
hardware. ie, RHEL 4 guests on RHEL 6 host.

Parameter RHEL5
Support Limit

RHEL6
Support Limit

RHEL6
Theoretical Limit

CPUs 64 (192 – platform
dependent)

4096 4096

Memory – Physical addressing 1T 8 T (pending testing) 64TB

Memory – process virtual address
space (note – hardware dependent
both RHEL5&6)

128T user
64T kernel

128T user
128T kernel

128TB

IRQs 239 33024 33024

of processes 32000 32000 (larger pending
testing)

4 million

KVM guest memory 512 Same as bare
metal

Same as bare
metal

KVM guest cpus 32 64 (pending testing) 64

Kernel scalability limits - x86-64

Determinism & realtime enhancements
● Some capabilities from Red Hat in MRG-realtime kernel (currently shipping

as a RHEL 5 layered product) mainstreamed in RHEL 6

● Determinism – Ability to schedule priority tasks predictability and consistently

● Priority – Ensure highest priority applications are not blocked by low priority High
Resolution Timers

● Timer – Microsecond precision not timer interrupt ~millisecond precision

● CFS scheduler (completely fair scheduler)

● Provides fair interactive response times by equally sharing available cycles rather
than fixed quantum of timeslice

● Includes modular scheduler framework – realtime task scheduler first

● Priority inheritance algorithm prevents low priority processes from blocking higher
priority by temporarily boosting priority to allow completion

● There will be a separate MRG-realtime offering for RHEL 6

● Includes threaded interrupts and features not yet incorporated upstream

● Allows rapid kernel innovation in supported product offering

● Advancements to make virtualization ubiquitous:
● Easier to deploy and manage

● Better control of resource allocation
● Migration among non-identical hardware

● Performance close to bare metal
● Allowing all classes of workloads to benefit from virtualization flexibility

– allowing a “run anywhere” deployment strategy.
● Scalability - I/O, memory, CPU
● More direct device access by guests, avoiding hypervisor overhead
● Heterogeneous - Includes focus on Windows guests as well as Linux

● Secure

● Further guest isolation when cohabitating

● Compatibility of RHEL ecosystem

● Consistent application environment - Obviate need for applications to
be aware of virt vs bare-metal, vs cloud deployment

● KVM's tight kernel integration avails the majority of kernel features to
virtualized guests. Examples: cgroups, CFS scheduler, timer precision.
Additionally allows paravirtualization of clock, interrupt controllers, etc.

RHEL 6 virtualization

● Transparent hugepages

● Hugepages is a mechanism to efficiently manage large memory allocations (ie 2MB) as a
unit rather than as small 4K chunks. Often 4X more efficient memory handling.

● Historically, hugepages suffered usability challenges as it required system startup time
pre-allocation and is not swappable.

● Transparent hugepages obviates need to manually reserve memory. Dynamically
allocates hugepage VM mappings for large allocation requests. Provides migration
flexibility.

● Flexible policy controls, can enable per guest or process group.

● Beneficial to applications requesting large memory chunks.

● Highly beneficial to KVM hypervisor to more efficiently manage and allocate guest
memory.

● Extended Page Table (EPT) age bits

● Enhancements in paging/swapping algorithm, nested page table support

● Allows host to make smarter choices in swapping when under memory pressure

● Allows swapping of transparently allocated hugepages by breaking up into smaller
pages.

Virtualization – virtual memory enhancements

● KSM – Kernel Shared Memory Swapping
● Identifies duplicate pages, consolidating duplicates. Major example

use case is Windows zero'ing all of memory at startup.

● Previously shared pages were not swapable

● New in RHEL6 is ability to swap KSM shared pages, beneficial to
alleviate memory pressure in overcommit situations.

● User return notifiers
● Allows register caching and avoids needlessly preserving register

states during context switching (expensive operations) when optional
components like floating point are not currently utilized.

Virtualization – performance enhancements

● SMP kernel synchronization enhancements (more fine grained)

● Benefit: Scalable to 64 cpus per guest (vs 16 on RHEL5)

● RCU kernel locking – utilizing a lock-free mechanism

● Guest spin lock detector – causes guest to yield if spinning on same
instruction too long (another guest not running may hold lock).

● Intel & AMD hardware primitives “PLE exit” optimize
● Guest hotplug – CPU, disk & net

● Allows virtual CPUs to be added/removed to running guests

● Can also add/remove disk and network devices

● Memory hotplug not currently supported

● x2apic

● A virtual interrupt controller allowing direct guest access, obviating need for
KVM emulation overhead.

Virtualization – scalability enhancements

● Vhost-net – a ring buffer abstraction between guest/host

● (Performance) Much of the network implementation moved into kernel (from
Qemu user space) for optimization. Fewer context switches and vmexits.
Increases multithreading.

● Raw socket mode for SRIOV

● Previously networking interrupts handled through software bridging in
“tap mode”

● Bypasses bridge – allowing logical NICs assigned to guests direct PCI pass-
through access. While optimized this ties guest to specific hardware and
limits migration flexibility.

● (Migration Flexibility) The vhost-net abstraction makes SRIOV allocation
transparent to guest, allowing migration, even among non-identical systems.

● Network boot using gpxe – providing a more modern environment for pxe
network booting

Virtualization – network optimizations

● AIO – asynchronous IO – allows initiating large number of IO operations (ie
database workloads)

● RHEL5 provides AIO emulation – Qemu spawns individual threads per IO
operation

● Utilizing native AIO infrastructure yields 20% improvement in many IO
intensive workloads

● External ring buffers – used in host/guest interfaces

● Allows more concurrent IO operations to be in progress, not limited by finite
buffer descriptors

● Doesn't consume extra buffer space when not needed

● Block alignment storage topology awareness

● Interrogates underlying storage hardware and pass through optimal
alignment and physical sector size to guests. Ie, in support of 4K sectors.
Requires storage device commands providing the info.

● Allows optimal filesystem layout and application aware IO optimizations.

Virtualization – storage enhancements

● Static PCI slots

● Minor differences in device ordering preclude migration, especially PCI slot numbering
among different versions of host/guest (ie RHEL4.7 on 5.5)

● This capability enables logical assignment of PCI slots, preserving across migration –
ensuring consistency of device namespace.

● CPU capability enumeration

● Providing accurate physical CPU type to applications & libraries allows usage of
optimization instructions, example SSE4 in recent instruciton set.

● Allows optimization of application performance with dyanamic adaptation to match
capabilities among migration domains.

● Vhost over SRIOV

● Logically separate physical / virtual device assignment. Guest sees virtual device.

● SRIOV optimizations previously were hardwired to specific units, precluding migration
in many cases.

● Host dynamically binds SRIOV resources to guests, allowing migration among non-
identical systems.

Virtualization – migration enhancements

Virtualization – svirt – SELinux virtual guest
containment

● RHEL 5 includes both Xen & KVM hypervisors
● RHEL 5 can accommodate RHEL 6 guests on either hypervisor

● Xen accommodates PV (paravirt) & FV (fully virtualized) Linux guests

● RHEL 6 includes KVM hypervisor

● Migration tool provided to convert RHEL 5 Xen guests to
KVM format to run on RHEL 6

Virtualization – Xen interaction

Storage management
● Topology awareness – I/O (alignment and chunk size) based on info from the

storage device. This is in dm, LVM, md, and utilities such as parted and mkfs
standardized interfaces to obtain alignment and optimal I/O stripe width.

● DIF/DIX scsi data integrity commands (checksum) superior integrity

● End-to-end data integrity check (SCSI DIF/DIX). Initially this extra checksum will be from the
HBA to the storage. Added to applications and filesystems in the future. (requires storage
hardware providing this capability)

● Initially targeted at database use case on raw partition & HBA to storage in filesystem

● FCoE (fibre channel over ethernet) on specialized adapters (Emulex, QLogic,
Cisco), and on standard NICs. FCoE install & boot support with DCB.

● iSCSI root/boot, including target

● Thin provisioning (virtual storage overcommit) via “discard” command – in LVM
& filesystem. Requires storage device capability. Improves SSD wear leveling.

● Block Discard. Optimizes thin provisioning in the storage device, and improves
wear leveling of SSDs. Currently used by XFS and ext4. Currently not usable
with LVM/DM/multipath or md

● SRIOV, NPIV – driver virtualization IO accelerators – guest direct access

● VSAN – virt SAN fabric – based on NPIV, each guest has a separate WID,
allows per-guest access control

● LVM/DM (Logical Volume Manager / Device Mapper)

● LVM hot spare, a disk or group of disks used to replace a failing disk

● Online resize of mirrored & multipath volumes

● Snapshot scalability enhancements for virtualization

● Multipath enhancements

● Dynamic multipath load balancing. Path selection based on queue depth, or I/O
service time

● Mirroring enhancements

● Snapshot of snapshot mirror

● Mirrored mirror log. Improves mirror log availability, to avoid the need for a re-
synch after a failure

● Cluster mirror

● Snapshot merge. Provides the ability to "rollback" changes that were made since the
snapshot was taken. (Additional work to integrate this with Anaconda and yum will be
post 6.0).

● dm-crypt enhancements. Selectable hash algorithm for LUKS header, new cryptsetup
commands, new libcryptsetup with versioned API.

● Remote Replication tech. preview.

Storage management

● Ext4 - will be the default file system and scale to 16TB

● XFS - optional offering to support extremely large file systems > 16TB,
up to 100TB. Tuned for larger servers & high end arrays.

● NFS

● NFS4.0 – clients will default to use NFS4.0 (tunable via mount or config file)

● NFS4.1 – enhanced support for referrals, delegation & failover.

● Support for enhanced encryption types for kerbrerized NFS

● Added IPv6 support

● GFS2 - optional

● Targeting high availability clusters of 2-16 nodes.

● Clustered samba (CTDB) – parallel (concurrent) servers for scalability & availability

● Filesystem utilities enhancements:

● Creation tools warn about unaligned partitions, and new partitions are created on
aligned boundaries with preferred block sizes. (hardware dependent)

● Enhanced write barriers for increased data reliability – for ext3, ext4, GFS2, xfs

Filesystem – larger & faster

Networking improvements
● 10GbE Driver support – on card switch and 8-16 pci devices.

● Virtual guest can access the full NIC directly – SR-IOV enhancement
– ie a single virt guest can saturate a 10GbE link.

● Data Center Bridging (DCB) support – in ixgbe driver

● Uses 802.1p VLAN priority tags to schedule and control traffic
rates

● Uses 802.1Qaz (priority grouping) and 802.1Qbb (priority flow
control) to physically separate traffic flows that coexists on the
same physical link

● FCoE (Fibre Channel over Ethernet)

● Working on performance improvements throughout the storage
stack (locking changes in the block and SCSI layers, improved
interrupt handling).

● RDMA support – over 10GbE & Infiniband

● Add IPv6 support

● NFSoRDMA

Networking improvements
● Major new features post RHEL5

● Ipv6 Mobility support, RFC 3775

● UDP-lite support, benefits multimedia protocols such as Voice Over IP, RFC 3828

● Add Mutiqueue hardware support API

● Large Receive Offload in network devices

● Network controller for cgroup

● Add multi-queue, DDR scheduler

● Add TCP Illinois and YeAH-TCP congestion control algorithms

● General Networking Stack Performance improvement

● RCU (read copy update) SMP locking optimization adoption in networking stack

● Use RCU for the UDP hash lock

● Convert TCP & DCCP has tables to use RCU.

● RCU handling for Unicast packets

● Multi-CPU rx to pull in from the wire faster

● Multi-queue xmit networking for multiple transmit queues devices

● New monitor tools for dropped packets, tc and dropwatch

System services enhancements

● Dracut replacement for initramfs, mkinitrd
● Better long-term supportability of storage configurations
● Can automatically add raid members via udev rules
● Allows change in hardware setup without needing to recreate initramfs

● NetworkManager - iSCSI, FCoE config, IPv6, Bridging

● Upstart flexible system service startup infrastructure

● CUPS printing enhancements
● SNMP-based monitoring of ink/toner/supply levels and printer status

● Device discovery speed improvements (backends now run in parallel)

● Automatic PPD configuration for PostScript printers (PPD options values queried from
printer) -- available in CUPS web interface

● Portreserve
● Avoids network port allocation failures for network services

EXT4 Pros & Cons

11

● Ext4 has many compelling new features

● Extent based allocation

● Faster fsck time (up to 10x over ext3)

● Delayed allocation

● Higher bandwidth

● Should be relatively familiar for existing ext3 users

● Ext4 challenges

● Large device support not finished in its user space tools

● Limits supported maximum file system size to 16TB

● Has different behavior over system failure

XFS Pros and Cons

● XFS is very robust and scalable

● Very good performance for large storage
configurations and large servers

● Many years of use on large (> 16TB) storage
● Red Hat tests & supports up to 100TB

● XFS challenges

● Not as well known by many customers and field
support people

● Performance issues with meta-data intensive (small
file creation) workloads

12

BTRFS

● Btrfs is the newest local file system

● Has its own internal RAID and snapshot support
● Does full data integrity checks for metadata and

user data
● Can dynamically grow and shrink

● Supported in RHEL6 as a tech preview item

● Developers very interested in feedback and testing
● Not meant for production use!

● ext3 is our default file system for RHEL5
● ext4 is supported as a tech preview in (5.4)

● xfs offered as a layered product (5.5+)

RHEL5 Local File Systems

14

RHEL6 Local FS Summary

● FS write barrier enabled for ext3, ext4, gfs2 and xfs

● FS tools warn about unaligned partitions

● parted/anaconda responsible for alignment
● Size Limitations

● XFS for any single node & GFS2 for clusters up to
100TB

● Ext3 & ext4 supported < 16TB

RHEL6 Support for Alignment

● New standards allow storage to inform OS of preferred
alignment and IO sizes

● Few storage devices currently export the information
● Partitions must be aligned using the new alignment

variables
● fdisk, parted, etc snap to proper alignment
● FS tools warn of misaligned partitions

● Red Hat engineering is actively working with partners
to verify and enhance this for our customers

RHEL6 Support for Discard

● File system level feature that informs storage of
regions no longer in active use

● SSD devices see this as a TRIM command and use it to
do wear leveling, etc

● Arrays see this as a SCSI UNMAP command and can
enhance thin lun support

● Discard support is off by default
● Some devices handle TRIM poorly
● Might have performance impact
● Test carefully and consult with your storage provider!

RHEL6 NFS Features

● NFS version 4 is the default
● Per client configuration file can override version 4
● Negotiates downwards to V3, V2, etc

● Support for industry standard encryption types

● IPV6 Support added for NFS and CIFS
● NFS clients fully supported in 6.0
● NFS server support for IPV6 aimed at 6.1

 Upcoming Local File System Features

● Union mounts
● Allow a read-write overlay on top of a read-only base file

system
● Useful for virt guests storage, thin clients, etc

● Continuing to help lead btrfs development towards an
enterprise ready state

● Support for ext4 on larger storage

● Enhanced XFS performance for meta-data intensive
workloads

 Upcoming NFS Features

● PNFS support
● pNFS and more 4.1 features aimed at a minor 6.x

release
● No commercial arrays support pNFS yet
● Ongoing work on open source (GFS2, object, etc)

pNFS servers
● Working with standards body to add support for

passing extended attributes over NFS
● Goal is to enable SELinux over NFS

Minimal Platform Install

● Goals
● Reduce Attack Surface
● Minimize package count
● Add back things needed for secure operation

● Need to be able to disable services
● Cron jobs for maintenance
● Mail delivery for cron jobs
● Update packages
● Iptables, audit, and sshd

Minimal Platform Install

Minimal Platform Install

Minimal Platform Install

RHEL5 (5.5 used for testing)

● Packages - 879

● Setuid - 33

● Setgid - 11

● Daemons - 44

● Networked services - 18

● Space – 2.2 Gb

● Notes: Boots into X even though no packages checked

Minimal Platform Install

Minimal Platform Install

RHEL5 (5.5 used for testing)

● Packages - 437

● Setuid - 29

● Setgid - 9

● Daemons - 39

● Networked services – 16

● Space – 1006 Mb

● Notes: Boots to runlevel 3

Minimal Platform Install

Minimal Platform Install

Minimal Platform Install

RHEL6 (pre-beta2)

● Packages - 226

● Setuid - 20

● Setgid - 7

● Daemons - 13

● Networked services – 5

● Space – 565 Mb

● Notes: Boots to runlevel 3 very quickly

Minimal Platform Install - Summary

Packages Setuid Setgid Daemons Network
Services

Space

RHEL5 879 33 11 44 18 2200

RHEL5
base

437 29 9 39 16 1006

RHEL6 226 20 7 13 5 565

Stronger Hashes

● MD5 was being used in many places for integrity or
password hashes

● Attacks against MD5 have been getting better

● NIST's Policy on Hash Functions:
● Federal agencies should stop using SHA-1 for digital

signatures, digital time stamping and other applications that
require collision resistance as soon as practical, and must use
the SHA-2 family of hash functions for these applications after
2010.

● Needed to adjust all tools that touch software from
source code to system verification.

Stronger Hashes

● Shadow-utils, glibc, pam, authconfig were done during
RHEL5

● Started Project for Fedora 11. Changed:
● Rpm, koji, spacewalk/satellite, yum, createrepo, pungi,

RHN, yaboot
● To do:

● Changes for grub password hash expected in 6.1

What is virt-v2v?

A command-line tool to manage virtual machine
conversions.

What does virt-v2v support?

Conclusion

● Manage the whole conversion process

● Convert RHEL/Windows virtual machines

● Convert Xen/KVM/ESX to RHEL or RHEV

● Available in a child channel of RHEL 5 with a RHEV
subscription

● Will be available in RHEL 6

● Open Source: available in Fedora

KVM

● Kernel-based virtual machine

● Linux Kernel modules turn Linux into a hypervisor
● In Linux since 2.6.20
● User space component is qemu-kvm

● Leverages Linux kernel features and support

● Leverages hardware virtualization support

General Architecture (KVM)

Linux

Driver Driver Driver

Hardware

User
VM

User
VM

User
VM

KVM

Ordinary
Linux

Process

Ordinary
Linux

Process

Ordinary
Linux

Process

Modules

General Architecture (Xen)

Domain 0

Hypervisor

Driver Driver

Driver

Hardware

User
VM

User
VM

User
VM

General Architecture (process model)

kernel

task task guest task task guest

General Architecure (process model cont.)

● Guests are ordinary processes
● Each virtual cpu is thread

● Like a new operating mode: kernel, user and “guest”

● “Guest” mode can hypercall, but not syscall

● Leverages Linux kernel features like
● Scheduling, Accounting, cgroups
● KSM (Kernel Samepage Merging)
● Power management

Brief virtualization history

● Mid 1960s IBM developed mainframe virtualization

● 2001 VmWare 1st x86 virtualization, binary translation

● 2003 Xen, para-vitualization

● 2005/6 Intel/AMD x86 hardware virtualization

● 2007 Linux 2.6.20 includes KVM

● 2009 Red Hat supports KVM in Red Hat Enterprise
Linux 5.4

● 2010 RHEL 6

Hardware features

● CPU support (Intel VMX, AMD SVM)
● EPT/NPT

● IOMMU/VT-d
● Protection for devices that are passed through to guests

● SR-IOV
● Safe sharing of real hardware
● Getting real traction with NICs

● NPIV
● Allows sharing storage

RHEL 6 CPU Enhancements

● 64 Virtual CPUs per guest

● Minimized CPU overhead
● RCU kernel “locking” improves large SMP performance
● User space notifiers
● X2apic, a virtual interrupt controller

RHEL 6 Memory Enhancements

● Transparent Hugepages
● Now dynamic, no boot time preallocation required
● Can be broken down and swapped

● Extended/Nested page table aging improves swap
choices

● Linux feature KSM (Kernel Samepage Merging)
coalesces common pages.

● A real win for Windows guests, where they zero all
pages on boot

KSM example

G1 G2

Kernel

RHEL 6 Block I/O Enhancements

● Native AIO, and preadv/writev

● External ring buffers in guest/host interface

● Virtio barrier support

● MSI interrupt support

● Intelligent block alignment changes, better default

● Near native performance

RHEL 6 Network I/O Enhancements

● Networking
● Vhost-net, moves a portion of networking from user

space to kernel.
● More migratable than pass through
● Can be used on top of SR-IOV devices, while preserving

migratability

● GPXE network boot supported.

Virtio drivers

Guest VM

kernel/HV

QEMU

tx r
x

tap

bridge

NIC

Device assignment – SR-IOV, VT-d/IOMMU

● Low overhead
● Best throughput
● Lowest latency

● Complicates migration

Guest VM

kernel/HV

QEMU

t
x

r
x

VF NIC #1

Physical NIC

VF NIC #2

In-Kernel Vhost-net

● Less context switching

● Low latency

● MSI

● One less copy

Guest VM

kernel/HV

QEMU

t
x

r
x

tap

bridge

NIC

vhost

Vhost over SR-IOV using macvtap

● Guest only knows virtio

● Migration friendly

● Excellent performance

● Future zero copy

Guest VM

kernel/HV

QEMU
t
x

r
x

macvtap

vhost

VF NIC #1
VF NIC #2

Physical NIC

RHEL 6 RAS Enhancements

● QMP – QEMU Monitor protocol

● Virtio serial (vmchannel)

● Improved migration protocol

● Kvm-clock

● Cgroups

● sVirt

● Power management – tickless kernel

● Static PCI slots to allow easier migration

Supported Guests

● RHEL 3/4/5/6

● Windows 2003, 2008, XP and 7

Future (beyond 6.0)

● PV spin locks

● Vhost zero copy

● Vswitch, VEPA

● Nested VMX

● UIO PCI device assignment

● Deep C-state power management

